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Preface

Alhamdulillah, praise and gratitude belong only to Allah SWT. May
peace and blessings always be upon the Prophet Muhammad SAW
and his family and followers until the end of time.

This book is written for plant breeders in particular, and researchers
in the field of life sciences in general, who are interested in conducting
genotype by environment interaction (GxE) analysis and stability
analysis. The topic of stability analysis has been up for decades,
and scientists have been exploring new methods until recently to
understand more about the GxE interaction.

We would like to thank the various parties who have provided assis-
tance and support in the development of PBSTAT-GE software and
the writing of this book. We hope that this book can be useful for
elucidating GxE in breeding programs.
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1 Introduction

Genotype x environment (GxE) interaction is an important issue in
plant breeding. The presence of GxE interaction can cause changes
in genotype rankings between environments and make the estimated
values of genetic parameters biased upward.

If the GxE interaction is significant, then a number of scientific ques-
tions may arise, including: Which genotypes have broad adaptation?
Which genotypes are environment-specific? Stability analysis may
be able to help answering these questions. This analysis can be re-
garded as a follow-up analysis when the combined analysis of variance
(ANOVA) reveals the significance of the GxE interaction effect.

A number of software have been developed for GxE interaction and
stability analyses for plant breeding, including GEA-R from The
International Maize and Wheat Improvement Center (CIMMYT) and
PBTools from the International Rice Research Institute (IRRI). In
addition, several R packages can also be used for stability analysis,
including ‘metan’ and ‘agricolae’. Some of these software require
installation, and not all of them are compatible with operating systems
other than Microsoft Windows.

PBSTAT-GE is a software developed for GxE interaction and sta-
bility analysis. Unlike the software mentioned earlier, PBSTAT-GE
is web-based so it does not require installation and only requires a
web browser to access it. PBSTAT-GE can be accessed at www.pb-
stat.com.

The sample data set for analyses presented in this book was obtained
from a multi-environment trial of new plant-type rice (Aswidinnoor
et al., 2023). This data set consists of 14 rice genotypes evaluated
in 11 environments in Indonesia, using a randomized complete block
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design with three replications in each environment. Grain yield per
plot was measured and then converted to ton per hectare at 15%
moisture content. Data analyses were carried out using PBSTAT-GE
version 3.5.1.
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2 Data Preparation

PBSTAT-GE reads data files in .xlsx format (Excel workbook), so it
is recommended that data be entered using Microsoft Excel. Table 2.1
presents a summary of the supported experimental design and data
preparation.

Table 2.1: Summary of the supported experimental design and data
preparation

Parameter Value

Experimental design Randomized complete block design in each
environment

Minimum number of
genotypes

5

Minimum number of
environments

3

Minimum number of
replications

2

Columns title in Excel env, rep, geno (all lowercase), followed by
trait names, e.g. yield, NPT, NFG

Number of rows in
Excel

(no. of envs x no. of genos x no. of reps) +
1 title row

Missing data Empty cell (not . or NA)
Maximum proportion
of missing data

10%

Data entry needs to be done carefully so that there are no mistakes.
After data entry is complete, recheck and make sure that the data
entered is correct. Checking the results of data entry can be done
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as follows. Click the Data > Filter menu in Excel, then click the
arrow in each column title, one by one. Under the arrow will appear
the unique values of the relevant column, making it easier for us
to see whether there is any strange data or not. In the categorical
variable columns such as env (environment), rep (replication), and
geno (genotype), see if there is a typo, for example, replication 1 is
accidentally written as 11. In the numeric variable column, see the
range of the data (from the smallest to the largest). The presence of
outlier data (too small or too large), or large gaps, or numbers that
are read as letters, could be caused by incorrect data entry. Correct
all errors if there are any so that all data is correct.

PBSTAT-GE is designed to analyze data from multi-environment
experiments, involving the evaluation of at least five genotypes across
a minimum of three environments, with at least two replications per
environment. The set of genotypes tested in each environment must
be the same. For example, if in environment 1 genotypes G01, G02,
G03, … G14 are evaluated, then in environment 2 and so on G01, G02,
G03, … G14 are also evaluated. The experiment in each environment
uses a randomized complete block design. Other experimental designs
are not currently supported. For a valid F test, the degrees of freedom
(df) error in the ANOVA by environment as well as the df replication
in environment and the df error in the combined ANOVA must be at
least 6 (Gomez & Gomez, 1984).

PBSTAT-GE reads the column headings. The first three columns
must be titled env, rep, geno (written in all lowercase letters), which
contain information on the environment, replication, and genotype,
respectively. The contents of the env and geno columns are recom-
mended to be short and without spaces, for example in the form
of codes E01, E02, E03, etc. for the environment and G01, G02,
G03, etc. for the genotype. The contents of the rep column must be
numbers (1, 2, 3, etc.). The following columns contain the observed
variables, for example, yield, number of productive tillers, number of
filled grains per panicle. The column titles of these variables must
be made without spaces and begin with a letter (not a number), for
example, Yield, NPT, and NFG.

4



The number of rows in the data worksheet must be the same as the
number of experimental units in the entire experiment plus one row of
column titles. For example, if the multilocation trial involves 14 lines,
11 environments, and 3 replicates per environment, then the number
of experimental units is 4 x 11 x 3 = 462. The number of rows in the
Excel worksheet is 462 rows of data + 1 row of column headers = 463.
An inappropriate number of rows can cause the program to fail.

If there is missing data, then the relevant cell is blank (not filled with
a dot, NA, or others). However, the env, rep, and geno information
for the blank cell must remain on the worksheet. The proportion
of missing data that can be accommodated by PBSTAT-GE is a
maximum of 10%. Missing data will be estimated by the combined
analysis linear model, and the analysis will be performed on the
complete data set.
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3 GxE means and correlation

3.1 GxE means

The GxE means table (Figure 3.1) shows the average genotype re-
sponse by environment and the average genotype from all environ-
ments. At the bottom of the table is the LSD value at 0.05 level to
compare the average of the tested genotype with that of the check
variety. If the difference between the two averages is greater than the
LSD value at 0.05 level, it is said to be significantly different. The CV
value (%) shows the magnitude of the experimental error in percent-
age of the average. Rep p-value and G p-value in each environment
are the p-values for the effects of replication and genotype from the
F test by environment.

Rep p-value, G p-value, and GxE p-value in the Mean column are
the p-values for the effects of replication in environment, genotype,
and genotype x environment interaction from the combined analysis
between environments. The Bartlett p-value shows the results of
the homogeneity test of error variance using the Bartlett method,
where the null hypothesis H0: error variances are homogenous and
the alternative hypothesis H1: error variances are not homogenous.
Here Bartlett p-value < 0.05 which indicates the error variance is
not homogeneous. However, because the CV value is < 20% in all
locations, the combined analysis can still be performed (Gomez and
Gomez, 1984).
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Figure 3.1: GxE means
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3.2 GxE boxplot

Below the GxE means table is a boxplot between the response variable
(Y) vs. environment (Figure 3.2). This boxplot shows the distribution
of plot values in each environment. The diversity in each environment
is caused by the diversity between genotypes and the diversity between
experimental plots. The lower edge of the box is the first quartile
(Q1), the line in the middle of the box is the second quartile or the
median (Q2), and the upper edge of the box is the third quartile (Q3).
The dotted line connects the box with the minimum value line within
the limits of Q1 - 1.5 * IQR and the maximum value within the limits
of Q1 + 1.5 * IQR. Values outside these limits are considered outliers
and are written in the form of black dots. From Figure 3.2 it is known
that environments E02, E04, and E10 have relatively small variations
within the environment, while E11 has relatively large variations.

3.3 GxE heatmap

GxE heatmap (Figure 3.3) visualizes the average genotype response
in each environment. The average response is standardized by column
(by environment) so that it has a mean of 0 and a standard devia-
tion of 1. Therefore, the heatmap needs to be read by column (by
environment). In one column, the darkest color indicates the highest
response value, while the lightest color indicates the lowest response
value.

The heatmap is complemented by two dendrograms based on Eu-
clidean distance, namely the genotype dendrogram and the environ-
ment dendrogram. The genotype dendrogram (row) groups genotypes
based on the similarity of their response patterns between environ-
ments, while the environment dendrogram (column) groups environ-
ments based on the similarity of their response patterns between
genotypes. In the genotype dendrogram, it can be seen that G01
and G06 are grouped because they tend to have high results in most
environments, and conversely G10 and G11 are grouped because they
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Figure 3.2: GxE boxplot
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tend to have low results in most environments. In the environmental
dendrogram, E05 and E10; E04 and E02; and E08 and E09 are lo-
cated close together, indicating that each group has similar response
patterns between genotypes.

Figure 3.3: GxE heatmap

3.4 Spearman correlations among environments

Spearman correlations among environments (Figure 3.4) show the
correlation of genotype ranks between pairs of environments. This
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correlation also indicates the magnitude of the GxE interaction be-
tween two particular environments. If the correlation is large and
positive, then the pattern of genotype ranks in one environment is
similar to the pattern of genotype ranks in the other environment. In
this case, the genotype that is a winner in one environment is likely
to be a winner in the other environment, and vice versa, the genotype
that is a loser in one environment is likely to be a loser in the other
environment. In this case, the GxE interaction is not very large and
the type of interaction may not be highly crossover. Conversely, a
negative correlation indicates a large GxE interaction and is of the
crossover type, where the patterns of genotype responses are opposite
between the two environments. The genotype that is a winner in one
environment is likely to be a loser in the other environment, and the
genotype that is a loser in one environment is likely to be a winner
in the other environment.

Figure 3.4: GxE correlation among environments

The results of the Spearman correlation analysis between environ-
ments can be in line with the environmental dendrogram in the
GxE heatmap, or they can be different. Two adjacent environmental
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groups in the dendrogram have significant positive Spearman correla-
tion coefficient values: E05 and E10 (r=0.64, p<0.05); and E08 and
E09 (r=0.71, p<0.01). In contrast, E04 and E02 which appear close
together in the dendrogram have an insignificant rank correlation
(r=0.36, p>0.05), and environments E07 and E08 which are far apart
in the dendrogram have the largest Spearman correlation (r=0.82,
p<0.01). This could be because the dendrogram is based on Euclidean
distances calculated from the standardized actual response values,
while Spearman correlation is based on ranking.
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4 Analysis of variance

4.1 ANOVA by environment

Analysis of variance (ANOVA) by environment was conducted to study
the effects of genotype and replication (block) on an observed response
variable in each environment. As an example, the ANOVA results in
environments 1 and 2 for yield trait are presented (Figure 4.1). In
environments 1 and 2, the effects of genotype were highly significant
(p<0.01) and significant (p<0.05) on yield, respectively, meaning that
there was at least one pair of genotypes that had different yield in
each environment. The effect of replication in environment 1 was not
significant on yield (p>0.05) indicating that the variability between
blocks was not large. In contrast, in environment 2, the effect of
replication was highly significant (p<0.01) indicating that blocking
was quite effective in controlling experimental errors.

4.2 Combined ANOVA across environments

A combined analysis of variance (ANOVA) between environments
was conducted to study the effects of environment, replication within
environment, genotype, and genotype x environment (GxE) interac-
tions on the observed response variables (Figure 4.2). Genotype was
assumed as a fixed factor while environment and replication within
environment were assumed as random factors. Consequently:

• Genotype was tested against GxE interaction

• Replication in environment and GxE interaction were tested
against experimental error
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Figure 4.1: ANOVA by environment
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ANOVA results showed that all sources of variability had a highly
significant effect on yield (p<0.01) (Figure 4.2). The highly significant
GxE interaction indicated that the genotype effects changed between
environments. To understand more about this GxE interaction,
stability analyses can be performed.

Figure 4.2: Combined ANOVA across environments

4.3 Checking ANOVA assumptions

There are at least three assumptions of ANOVA, namely (1) errors are
independent, (2) error variances are homogeneous, and (3) errors are
normally distributed. The first assumption (errors are independent),
can be considered fulfilled if the randomization and treatment place-
ment were carried out correctly. The second and third assumptions
can be checked using diagnostic plots (Figure 4.3).

The assumption of homogeneity of error variance can be checked with
the residuals vs fitted values plot. If the distribution of points along
the X-axis is relatively uniform (more or less the same width), and
does not form a pattern (usually in the shape of a funnel; the greater
the fitted value, the larger the variance), then the assumption of
homogeneity of error variance can be considered fulfilled.
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The assumption of normality of error is checked with a normal Q-
Q plot. If the points are mostly on the line and there are no big
deviations (often the deviations are at the tail and head), then the
assumption of normality of error variance can be considered fulfilled.

Figure 4.3: Diagnostic plots

The residual vs fitted values plot (Figure 4.3 left) shows that the
widths of the points along the X-axis are not significantly different.
The normal Q-Q plot (Figure 4.3 right) shows that most of the points
fall on the line, although there are deviations at the tail and head.
Both of these plots indicate that the assumptions of homogeneity
of error variances and normality of error are met for the combined
analysis of variance across environments.
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5 Variance components and
heritability

5.1 Estimates of variances

This analysis assumes a random effects model, i.e., all variables in
the model are assumed random. Estimates of variance used the least
square methods. Vg is the genotypic variance, Vge is the genotype
x environment interaction variance, Ve is the error variance, Vp
plot is the phenotypic variance on a plot basis, and Vp mean is
the phenotypic variance on an entry-mean basis. MSE is the mean
square error, MSGE is the mean square GxE, MSG is the mean
square genotype, r is the number of replications, and t is the number
of environments. A negative variance value may be interpreted as
zero.

𝑉𝑒 = 𝑀𝑆𝐸

𝑉𝑔𝑒 = 𝑀𝑆𝐺𝐸 − 𝑀𝑆𝐸
𝑟

𝑉𝑔 = 𝑀𝑆𝐺𝐸 − 𝑀𝑆𝐸
𝑟𝑡

𝑉𝑝(𝑝𝑙𝑜𝑡) = 𝑉𝑒 + 𝑉𝑔𝑒 + 𝑉𝑔

𝑉𝑝(𝑚𝑒𝑎𝑛) = 𝑉𝑒
𝑟𝑡

+
𝑉𝑔𝑒

𝑡
+ 𝑉𝑔
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5.2 Estimates of heritability

The heritability estimate was calculated according to Fehr (1991).
Heritability indicates the proportion of phenotypic variance due to
genetic variance. ℎ2

(𝑝𝑙𝑜𝑡) is the broad-sense heritability on a plot
basis and ℎ2

(𝑚𝑒𝑎𝑛) is broad-sense heritability on an entry-mean basis.
The usage of plot or mean basis heritability depends on the basis of
selection. If the selection was based on plot values (i.e., selecting best
plots), then the plot-basis heritability is relevant. On the other hand,
if the selection was based on entry means (i.e., selecting best entries),
then the mean-basis heritability is pertinent. A negative heritability
value may be interpreted as zero.

ℎ2
(𝑝𝑙𝑜𝑡) =

𝑉𝑔

𝑉𝑝(𝑝𝑙𝑜𝑡)
× 100%

ℎ2
(𝑚𝑒𝑎𝑛) =

𝑉𝑔

𝑉𝑝(𝑚𝑒𝑎𝑛)
× 100%
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6 Stability parameters

About forty parameters of stability are available in the current version
of PBSTAT-GE which are divided into three parts. Here, parameters
refer to measures, as the discussion encompasses both parametric
and nonparametric approaches. For information on stability parame-
ters and their calculations, see a review by Pour-Aboughadareh et
al. (2022) and the manual of R packages ‘metan’ (Olivoto and Lucio,
2020).

Part 1 of stability parameters (Figure 6.1) comprises Y: Mean re-
sponse; EVar: Environmental variance; W2: Ecovalence; b: Regres-
sion coefficient; b_sig: Significance for b (H0: b=1, 95% CI: 0.9 -
1.1); b_p: p-value for bi (H0: b=1); s2d: Deviation from regres-
sion; s2d_sig: Significance for s2d (H0: s2di=0); s2d_p: p-value for
s2d (H0: s2di=0); D2: Genotypic stability; �2: Stability variance;
R2: Coefficient of determination; CV: Coefficient of variation; GAI:
Geometric adaptability index; POLAR: Power law residuals; aCV:
Adjusted coefficient of variation; Wi_g, Wi_f, Wi_u: Genotypic
confidence index for all, favorable, and unfavorable environments,
respectively; Pi_a, Pi_f, Pi_u: Superiority indexes for all, favorable,
and unfavorable environments, respectively.

Part 2 of stability parameters (Figure 6.2) contains ASTAB: AMMI
based stability parameter; ASI: AMMI stability index; ASV: AMMI-
stability value; AVAMGE: Sum across environments of absolute value
of GEI modeled by AMMI; Da: Annicchiarico’s D parameter; Dz:
Zhang’s D Parameter; EV: Sums of the averages of the squared
eigenvector values; FA: Stability measure based on fitted AMMI
model; MASI: Modified AMMI stability index; MASV: Modified
AMMI stability value; SIPC: Sums of the absolute value of the IPC

19



Figure 6.1: Stability parameters (1)

scores; Za: Absolute value of the relative contribution of IPCs to the
interaction; WAAS: Weighted average of absolute scores (WAAS).

Figure 6.2: Stability parameters (2)

Part 3 of stability parameters (Figure 6.3) include YS: Yield and
stability index; YS_sel: ‘+’ selected genotypes having YS > mean
of 2.29; TOP: Number of sites at which the genotype occurred in
the top third of the ranks; S1, S2, S3, S6: Huhn nonparametric
stability measures. S1: Mean of the absolute rank differences of a
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genotype over environments, S2: Variance among the ranks over the
environments, S3: Sum of the absolute deviations, S6: Relative sum
of squares of rank for each genotype; Z1, Z2: Test statistics for S1
and S2, respectively; N1, N2, N3, N4: Thennarasu nonparametric
stability measures. Chi-square tests of Huhn stability measures are
shown in Figure 6.4.

Figure 6.3: Stability parameters (3)

Figure 6.4: Test of Huhn stability measures
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7 Stability ranks

Ranks of each stability parameter are shown in Figure 7.1, Figure 7.2,
and Figure 7.3. Ranking 1 means the most stable and the highest
ranking means the least stable for the parameter in question. Part 1
comprises rY: Rank of mean response; rEVar: Rank of environmental
variance; rW2: Rank of ecovalence; rb: Rank of regression coefficient;
rs2d: Rank of deviation from regression; rD2: Rank of genotypic
stability; r�2: Rank of stability variance; rR2: Rank of coefficient of
determination; rCV: Rank of coefficient of variation; rGAI: Rank of
geometric adaptability index; rPOLAR: Rank of power law residuals;
raCV: Rank of adjusted coefficient of variation.

Figure 7.1: Stability ranks (1)

Part 2 contains rASTAB: Rank of AMMI based stability parameter;
rASI: Rank of AMMI stability index; rASV: Rank of AMMI-stability
value; rAVAMGE: Rank of sum across environments of absolute
value of GEI modeled by AMMI; rDa: Rank of Annicchiarico’s D
parameter; rDz: Rank of Zhang’s D Parameter; rEV: Rank of sums of
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the averages of the squared eigenvector values; rFA: Rank of stability
measure based on fitted AMMI model; rMASI: Rank of modified
AMMI stability index; rMASV: Rank of modified AMMI stability
value; rSIPC: Rank of sums of the absolute value of the IPC scores;
rZa: Rank of absolute value of the relative contribution of IPCs to
the interaction; rWAAS: Rank of weighted average of absolute scores
(WAAS).

Figure 7.2: Stability ranks (2)

Part 3 includes rYS: Rank of yield and stability index; rTOP: Rank of
number of sites at which the genotype occurred in the top third of the
ranks; rS1, rS2, rS3, rS4, rS6: Rank of Huhn nonparametric stability
measures; rN1, rN2, rN3, rN4: Rank of Thennarasu nonparametric
stability measures.
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Figure 7.3: Stability ranks (3)
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8 Ranks analyses

8.1 Spearman correlations among stability ranks

Spearman correlation analysis studies the relationship between the
rankings of stability parameters (Figure 8.1). A positive and sig-
nificant correlation between two stability parameters indicates that
the rankings of the genotypes on both parameters are related in the
same direction. This means that the winning genotype based on one
parameter is also the winner based on the other parameter, and vice
versa. This also indicates that if only the ranking of the genotypes
matters, then only one of the two parameters can be chosen because
it provides the same information. For example, Wricke’s ecovalence
has a perfect rank correlation (r=1.00, p<0.01) with Shukla stability
variance, indicating that genotype rankings on both parameters are
the same.

8.2 Principal component analysis

Principal component analysis was performed to study the relationship
between genotypes and stability rankings (Figure 8.2). Red vectors
represent stability parameters and black labels represent genotypes.
The correlations of stability parameter rankings may be inferred from
the vectors. Vectors with < 90∘ angles are positively correlated, 90∘

angles are uncorrelated, and > 90∘ angles are negatively correlated.
For example, rTOP is positively correlated with rPi_a; rN2, rN3, and
rN4 are positively correlated; however, the two groups are negatively
correlated. Genotypes that are located in the same direction and
pass the arrowhead have good rankings for the respective stability
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Figure 8.1: Spearman correlations among stability ranks

parameters. For example, G06 is good based on TOP and G11 is
good based on rN2, rN3, and rN4 parameters.

8.3 Heatmap visualization

Heatmap visualization for genotype and stability ranking also illus-
trates the relationship between the two (Figure 8.3). The data used
for this heatmap visualization is standardized by column (stability
parameter), so it needs to be read per column. The oldest color
indicates the best ranking for the stability parameter in question,
and the youngest color vice versa. For example, for the leftmost
stability parameter, Wi_f, G02, and G05 have good rankings. For
the rightmost stability parameter, sigma2, G11, and G05 have good
rankings. The heatmap is complemented by dendrograms based on
rows (genotypes) and columns (stability parameters). The row den-
drogram indicates that G07 and G04 have similar stability ranking
profiles, as do G10 and G13. The column dendrogram shows that
rW2 (ranking of Wricke ecovalence) and rsigma2 (ranking of Shukla
stability variance) are very close as discussed previously.
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Figure 8.2: PCA of stability ranks
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Figure 8.3: Heatmap of stability ranks
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8.4 Cluster analysis

Cluster analysis for stability parameter ranking is performed to study
the similarity of ranking between stability parameters (Figure 8.4).
This cluster analysis is performed based on the dissimilarity coefficient
calculated using the formula 1 − 𝑎𝑏𝑠(𝑟𝑥𝑦), where 𝑟𝑥𝑦 is the Spearman
correlation coefficient between stability parameters 𝑥 and 𝑦. The
results of this dendrogram are similar to the stability parameter
dendrogram in the heatmap, for example, rW2 (ranking of Wricke
ecovalence) and rsigma2 (ranking of Shukla stability variance) are
located very close to each other.
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Figure 8.4: Dendrogram of stability ranks
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9 Eberhart-Russell stability
analysis

9.1 Analysis of variance

Eberhart and Russell (1966) proposed two stability parameters,
namely the regression coefficient (𝑏𝑖) and the regression deviation
(𝑠2

𝑑𝑖). A stable genotype has a regression coefficient value of 𝑏𝑖 = 1
and a regression deviation of 𝑠2

𝑑𝑖 = 0. The stability parameter 𝑏𝑖 = 1
was previously described by Finlay and Wilkinson (1963).

The statistical test for the parameter 𝑠2
𝑑𝑖 can be seen in the Eberhart-

Russell ANOVA, in the ‘Pooled deviations’ partition section. There
the regression deviation for each line is tested F with the null hy-
pothesis 𝑠2

𝑑𝑖 = 0 and the alternative hypothesis 𝑠2
𝑑𝑖 ≠ 0. The null

hypothesis is rejected if the p-value < 0.05.

The Eberhart-Russell ANOVA is shown in Figure 9.1. The results of
the F-tests on the regression deviation of genotypes G02, G05, G10,
and G11 show insufficient evidence to reject H0, so H0 is accepted.
This means that the regression deviations for these genotypes are
not significantly different from 0. In other words, the four genotypes
meet at least one Eberhart-Russell stability criterion (𝑠2

𝑑𝑖 = 0). The
value of 𝑠2

𝑑𝑖 and the results of the F test on 𝑠2
𝑑𝑖 = 0 can also be seen

in the stability parameters section.
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Figure 9.1: Eberhart-Russell ANOVA
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9.2 Plot of response and environmental index

The response and environmental index plot (Figure 9.2) visualizes the
results of genotypes in each environment, where the environments are
ranked by environmental index. The environmental index is calculated
as the average response of all genotypes in that environment. The
environment with the smallest index is the most ‘infertile’, located
on the far left, while the environment with the largest index is the
most ‘fertile’, located on the far right. From this plot, it can be seen
that G09 has the highest average yield in the environment with the
smallest index, while G06 is among those with the highest average
yield in several environments with relatively small to relatively large
indices.

9.3 Regression plot

The regression plot between the response value and environmental
index is shown in the Figure 9.3. This plot is a linear regression plot
for each genotype in the previous plot, with the equation 𝑌 = 𝑎𝑖 +𝑏𝑖𝑋
where 𝑌 is the response value, 𝑎𝑖 is the intercept of the ith genotype,
which is the value of 𝑌 at 𝑋 = 0, and 𝑏 is the regression coefficient
of the ith genotype. The average environmental regression line is
visualized with the line 𝑏 = 1 (see the legend at the bottom right),
where the line is the line 𝑌 = 𝑋. The value of 𝑏𝑖 and the result of
its t-test against 𝑏𝑖 = 1 are shown in the stability parameter section.
Genotypes with a value of 𝑏𝑖 < 1 are probably adaptive in marginal
environments, genotypes with 𝑏𝑖 = 1 have average stability, and
genotypes with a value of 𝑏𝑖 > 1 are probably adaptive in fertile
environments. Genotypes with 𝑏𝑖 = 1 and an average yield above
the general mean show broad adaptation across all test environments,
while genotypes with 𝑏𝑖 < 1 and an average yield below the general
mean are less adaptive across all environments. This plot shows that
the position of the G6 genotype line (bi=1.19, p<0.01) is generally
above the other genotypes. In this case, although the 𝑏𝑖 value is
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Figure 9.2: Plot of yield and environment index
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significantly greater than 1, the genotype still appears to have broad
adaptation potential.

Figure 9.3: Eberhart-Russell regression plot

9.4 Plot of regression coefficient and response
value

The plot of regression coefficient and response value (yield) (Figure 9.4)
shows the position of each genotype based on its regression coefficient
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and response value. The vertical gray line is ̄𝑌 ± 𝐿𝑆𝐷0.05 and the
horizontal gray line is the 95% confidence interval for 𝑏𝑖 = 1. In
Figure 9.4, it can be seen that the genotypes with 𝑏𝑖 values that are
not significantly different from 1 are G03, G05, G07, G08, G10, G12,
G13, G14. Among these genotypes, the ones with high yields are G08
and G05. Of the two genotypes, G05 meets the two Eberhart-Russell
stability criteria, namely 𝑏𝑖 = 1 and 𝑠2

𝑑𝑖 = 0.

Figure 9.4: Plot of regression coefficient and yield

36



10 Francis-Kannenberg stability
analysis

Francis and Kannenberg (1978) put forward the concept of stability
based on the coefficient of variation (CV) and yield values. The CV
mean line and the yield mean line divide the genotypes into 4 groups,
namely: Group 1 (top left): high yield, small CV, Group 2 (top right):
high yield, large CV, Group 3 (bottom left), low yield, small CV, and
Group 4: low yield, large CV (bottom right) (Figure 10.1). According
to Francis-Kannenberg, stable genotypes are those in Group 1. Thus,
in our example, genotypes G03, G05, G08, and G09 are classified as
stable based on this parameter.

From the results of their research on 15 corn hybrids, Finlay and
Wilkinson (1978) stated that the genotypes in Group 1 had an average
of 𝑏𝑖 = 1.00 and 𝑠2

𝑑𝑖 and 𝜎2
𝑖 that were not significantly different from

0. This indicates the possibility that a genotype that is stated to be
stable based on Finlay and Wilkinson is also categorized as stable
based on Eberhart and Russell (1966) and Shukla (1972).
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Figure 10.1: Plot of Y vs coefficient of variation
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11 AMMI stability analysis

11.1 ANOVA and PCA

Additive main effect and multiplicative interaction (AMMI) is a
multivariate stability analysis method to evaluate genotype stability
in a number of environments. This method combines ANOVA to
explain the additive effects of genotype and environment, and principal
component analysis to explain the effects of genotype x environment
(GxE) interactions (Gauch and Zobel, 1988). The results of the
AMMI variance analysis for the example case of multilocation rice
test data are shown in Figure 11.1.

11.2 AMMI biplot: PC1 and PC2

AMMI biplot PC1 and PC2 (Figure 11.2) depicts the interaction of
genotype and environment that can be explained by two principal
components. PC1 and PC2 explain 40.8% and 21.2% of the variability
of GxE interactions, respectively, so the total variability of GxE
explained by the two PCs is 62.0%. This shows that there is still
38.0% of GxE variability that cannot be explained by this biplot.
However, this biplot may still be able to provide an overview of GxE
interactions to some extent.

The coordinates of each environment are marked with green dots
(boxes). The direction of the vector is from the center point (0,0) to
that point. The coordinates of each genotype are marked with orange
dots (circles). Genotypes located inside the ellipse around the center
point are relatively stable genotypes (exhibit low GxE). Genotypes
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Figure 11.1: AMMI ANOVA
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G11, G02, G13 appear to be included in this group. Genotypes
located close to the end of the environmental vector are thought to
be adaptive (have a positive interaction effect) with the environment.
For example, G04 has a positive interaction (‘suitable’) with E11,
and G12 with E04. However, the direction of the vectors E11 and
E04 are opposite, so G04 has a negative interaction (‘not suitable’)
with E04, as does G12 with E11. However, it should be noted that
the unexplained variability by the PC1 and PC2 biplots is still quite
large, so in this case, AMMI analysis is not recommended as the only
basis for decision-making in selection.

Figure 11.2: AMMI biplot: PC1 vs PC2
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11.3 AMMI biplot: PC1 and Y

AMMI biplot PC1 and Y (Figure 11.3) shows the stability and re-
sponse values of the genotypes. The horizontal line Y=0 shows
stability, and the vertical line X=7.8 shows the average yield. The
genotype with the highest yield is the one on the far right, and the
most stable genotype is the one closest to the horizontal line Y=0.
In this example, the ideal genotype (high yield and stable) based on
AMMI analysis does not seem to exist, but the closest ones are G06
(high yield but less stable) and G05 (lower yield but more stable).
From the environmental side, E06 is on the far right, which shows
that the environment has a high average yield (7.80 tons/ha). When
interpreting, we need to remember that PC1 only explains 40.8% of
the GxE variability, so there is still a large proportion of variability
that cannot be studied in this plot.
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Figure 11.3: AMMI biplot: PC1 vs Yield
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12 GGE stability analysis

12.1 GGE vs AMMI

The stability analysis of genotype and genotype by environment
(GGE) is similar to AMMI, which uses principal component analysis
(PCA). The difference is, that AMMI uses PCA to describe the
influence of GxE, while GGE uses PCA to describe the influence of
G+GxE. Therefore, the PC1 and PC2 biplots of AMMI can only
describe stability/adaptability, while the PC1 and PC2 biplots of
GGE can describe the average and stability/adaptability at the same
time.

12.2 GGE biplot: Which-won-where

In this example, PC1 vs PC2 biplot explains 63.8% of G+GE variance.
There is a remaining 36.8% unexplained G+GE variance, so the
interpretation of this biplot should be taken with caution. Genotypes
close to the center point are more stable than those far from the
center point. The genotype yield is greater than the average if the
angle of the genotype vector and the environment vector is < 90∘, the
genotype yield is lower than the average if the angle of the genotype
vector and the environment vector is > 90∘, and the genotype yield
is close to the average if the angle of the genotype vector and the
environment vector is around 90∘ (Pacheco et al, 2015).

The polygon is divided into sectors (‘mega-environments’) (Fig-
ure 12.1). The best genotype in each mega-environment is the one
at the corner of the polygon. Genotype G06 is located at one of
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the corners of the polygon in a sector that contains all environments
except E01 and E05. This indicates that the genotype has a greater
yield than the average in most environments. In contrast, the G12
genotype, which lies opposite to G06, has a lower yield than the
average in most environments.

Figure 12.1: GGE biplot: Which-won-where
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12.3 GGE biplot: Discriminativeness
vs. representativeness

GGE biplot: Discriminativeness vs. representativeness (Figure 12.2)
tells us about the environments. The angle between two environments
shows the correlation between them. E03 is correlated with E04 (an-
gle < 90∘) and uncorrelated with E05 (angle 90∘). In this example,
no two environments are negatively correlated (angle > 90∘). Posi-
tive correlations between multiple locations indicate that the same
information about the genotypes being tested can be obtained from
a smaller number of environments. Negative correlations between
locations indicate strong GxE, where a genotype that is adaptive at
one location is likely not adaptive at the other location (Yan and
Tinker, 2006).

The length of the vector indicates the ability of the environment to
discriminate genotypes. Environments with long vectors are more
discriminating (informative in distinguishing genotypes), while envi-
ronments with short vectors are less discriminating. Environments
that are consistently uninformative are not recommended for use as
test environments. The circles help visualize the length of the vectors
(Yan and Tinker, 2006).

The average environment axis (AEA) is depicted by a line through the
center point and the average environment (AE) point. Environments
with a more acute angle with AEA (for example E02) are more
representative environments. An informative and representative test
environment is an environment with a long vector and an acute angle
with AEA (E11) which is considered good for selecting genotypes
that are generally adapted (Yan and Tinker, 2006).

Informative but unrepresentative test environments (long vectors
but angles with obtuse AEAs) are considered good for selecting
environment-specific genotypes if the environment can be divided
into ‘mega-environments’, or identifying unstable genotypes if the
environment is a single ‘mega-environment’ (Yan and Tinker, 2006).
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Figure 12.2: GGE biplot: Discriminativeness vs. representativeness
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12.4 GGE biplot: Mean vs. stability

GGE biplot: Mean vs stability (Figure 12.3) projects the mean and
stability of each genotype. The desired genotypes are those that are
stable (close to the horizontal line) and high-yielding (on the right).
In this example, G06 is closest to the ideal genotype.

Figure 12.3: GGE biplot: Mean vs. stability
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12.5 GGE biplot: Ranking genotypes

The ideal genotype (IG) is the most stable genotype and has the
highest yield. This genotype is visualized as the IG point in the center
of the circle (on the right, but not visible in Figure 12.4). The IG
point comes from the projection of the genotype vector that has the
highest average in AEA. The genotype closest to the IG point is the
genotype closest to the ideal (Yan and Tinker, 2006).

Figure 12.4: GGE biplot: Ranking genotypes
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